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ABSTRACT

Cost and miniaturization of autonomous unmanned vehicles (AUV) drive com-

ponent reuse and better sensor data analysis. One such component is the forward

looking sonar (FLS) which can be used for obstacle avoidance and to extract vehicle

state information. However, autonomous feature extraction of images from the FLS

is difficult due to the noise inherent in the sensor and the sensor’s susceptibility to

interference from other acoustic devices.

This thesis investigated techniques to detect and classify common acoustic

noise artifacts and common objects in a single frame. Other techniques require three

or more frames to filter objects from other noise sources. A combination of probabilis-

tic and template-based models were used to successfully detect and classify acoustic

noise and objects. One common noise source is the micro modem which was de-

tected 100% of the time with 1% false positives. Objects such as the ocean floor were

correctly classified more than 93% of the time in most sites.

Due to the short development time frame, the software was developed with

a two-stage approach. First, a high level scripting language was used for rapid pro-

totyping of different classification techniques. In order to meet the time-constrained

requirements of the target software, the classification algorithms were encapsulated as

C++ classes in an object oriented design once the desired techniques were identified.
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I. INTRODUCTION

Autonomous underwater vehicles (AUVs) are becoming a common tool for

scientific marine research, commercial sea exploration, and for the military. AUVs

excel in missions that require speed and stealth, especially where a tethered Remotely

Operated Vehicles (ROV) to a surface ship would be impractical, too expensive, or

too dangerous.

A common surveying tool for AUVs is a side scan sonar. This is an active sonar

that is capable of rapidly surveying large swaths of the sea floor. During the sonar

survey, the vehicle needs to maintain a constant altitude above the ocean ground. De-

pending on the specific side scan sonar device the survey altitude varies. For example,

a Hydroid REMUS AUV with a Marine Sonics 900 kHz side scan sonar requires an

altitude of three meters, while the current sensor suite on board the REMUS 100

AUV is able to react to ground slope changes of no more than 45° [Ref. 10].

Operating at low altitude, the AUV is constantly at risk of colliding with

obstacles on the ground or floating in the water, such as storm debris. Forward looking

sonar (FLS) can be used as an effective tool for avoiding possible collisions. Fig. 1

shows what an underwater obstacle avoidance scenario would look like. Recently, our

lab has made progress in on-board image processing of BlueView 450 FLS for use in

AUV obstacle avoidance.

FLS is ideal for obstacle avoidance because of the large area ensonified in a

single ping. A ping in the horizontal plane can detect objects greater than 90 meters

ahead of the vehicle in a 95°swath. However, autonomously extracting the objects

from the image is very difficult. First, the size and shape of the possible obstacles

is unknown. Furthermore, background noise due to gain and backscatter can hide

objects that have a faint return, and the sonar is susceptible to artificially introduced

artifacts caused by other acoustic sources such as the micro modem.
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Figure 1. Left: Course with AUV flying above the ground on collision course with
rock obstacle. Right: Actual forward looking sonar image overlaid on the schematic
scene.

Our approach to detecting these unknown objects was to first model and iden-

tify common artifacts in the forward looking sonar image. There are three common

artifacts in the image. The most prevalent is the background noise, followed by ar-

tifacts generated by the micro modem and a pulse-like artifact generated from an

unknown source. Once these had been described we searched for common objects

seen in the image. Currently the only object modeled is the ground. When operating

at low altitudes the ground is present in almost every frame. Proper identification

of the ground location and orientation has the benefit of being able to extract ve-

hicle state information, such as pitch and altitude. With power limiting most AUV

operations, the ability to save power by reducing sensors will increase mission times.

Identifying the ground has the additional benefit of being able describe an obstacle’s

location to the vehicle and its altitude without needing any vehicle state information.

After these steps are completed, we are able detect obstacles of unknown appearance

with improved speed and accuracy.

The following models are described and applied to acoustic images of forward-

looking sonars for detection and identification of noise, ground and obstacles. First,

equipment-related work and prior efforts at acoustic image analysis and sonar-based

2



navigation are discussed. Next, the models are introduced, followed by a description

of the experiments. The results and their discussion conclude this thesis.

A. EQUIPMENT

1. REMUS AUV

The AUV used for the experiments was the Remote Environmental Monitoring

UnitS (REMUS) 100 Fig. 2. The REMUS vehicle was originally developed at Woods

Hole Oceanographic institute, and is currently developed and sold through Hydroid

Inc. The REMUS 100 are used in a variety of applications including hydrographic

surveys, harbor security, environmental monitoring and mapping. One primary use

for the NAVY is for mine counter measures (MCM).

The REMUS 100 is a small compact AUV that is 19 cm in diameter and weighs

less then 37 kg. This enables the vehicle to be launched from any size boat without

special deploying or recovery equipment. The vehicle can operate to a depth of 100

meters for up to 22 hours at speeds between 1.5-2.6 m/s. Refer to Table I for more

details.

To navigate the REMUS 100 uses a combination of sensors Fig. 3. When oper-

ating on the surface, the REMUS 100 uses GPS to get a location fix. Once underwater,

the REMUS measures its altitude and speed over the ground and speed through the

water column with an Acoustic Doppler Current Profiler (ADCP)/Doppler Velocity

Log (DVL). Along with a compass, the vehicle will navigate using dead reckoning.

Dead reckoning alone is prone to position errors [Ref. 1]. To reduce these errors the

vehicle will periodically update its location through a Long Base Line (LBL) fix. For

LBL navigation the vehicle calculates its position by measuring the 2-way travel time

of pings to acoustic beacons.

2. Sensors

The Naval Postgraduate School REMUS AUV is equipped with a standard

set of passive sensors, including accelerometers and gyroscopes, to measure vehicle

3



Figure 2. Naval Postgraduate School REMUS 100 AUV with BlueView FLS
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Table I. REMUS 100 Technical Specifications [Ref. 11].

Maximum Diameter 19 cm

Maximum Length 160 cm

Weight In Air 37 kg

Trim Weight 1 kg

Maximum Operating Depth 100 m

Energy 1 kw-hr Lithium Ion Battery

Endurance 22 hrs at optimum speed of 1.5 m/s 8 hrs at 2.6 m/s

Propulsion Direct drive DC brushless motor to open 3-bladed propeller

Velocity Range Up to 2.6 m/s

Control 2 coupled yaw and pitch fins

On / Off Magnetic switch

External Hook-Up 2-pin combined Ethernet, vehicle power and charging
4-pin serial connector

Navigation Long baseline (LBL)
Ultra short baseline (USBL)
and Doppler-assisted dead reckoning

Transponders 20 to 30 kHz operating frequency range

Tracking Emergency transponder
mission abort
and in-mission tracking capabilites

Standard Sensors ADCP/DVL
Side Scan Sonar
Long baseline (LBL), Ultra short baseline (USBL)
Conductivity
Temperature
Pressure

state along with sensors to measure water conductivity, temperature, and depth. The

REMUS carries acoustics sensors to calculate velocities, currents, and position. The

Acoustic Doppler Current Profiler (ADCP)/Doppler Velocity Log (DVL) operates at

1200kHz and utilizes the Doppler Effect to measure water currents above and below

the vehicle. The DVL is also used for altitude and velocity over ground estimation.

For mapping, the REMUS uses a Marine Sonics 900 kHz sidescan sonar. The

Marine Sonics 900 has a range of 30 meters to each side of the vehicle when flying at

a 3 meter altitude. The REMUS can send status messages back to the operator and

5



Figure 3. Different sensors REMUS uses for navigation in shallow water [Ref. 4].

receive start and stop commands through the acoustic Micro-modem. The acoustic

Micro-modem operates at 25kHz and can transmit data between 80-5400 bps. The

Micro-modem can also be used by the operator to get a range to the vehicle.

3. BlueView Forward Looking Sonar

The primary sensor used for this thesis was the BlueView 450X-R100 Forward-

looking sonar (FLS) Fig. 4 . The BlueView 450X is a low power high-resolution blazed

array sonar, comprised of a series of six small sonar transducers. Four are mounted

in the horizontal plane and provide a 95°field of view. The remaining two transducers

are vertically mounted and combine to provide a 45°field of view. Refer to Table II

for more details.

With transducers mounted in the vertical plane, a better measurement of an

object’s height can be made. A common technique is to measure the shadow the

object creates. However, if the object is higher than the vehicle’s altitude then there

is no shadow in the sonar image. The vertical plane can then be used to calculate the

object’s altitude. For this reason, the vertical plane was used as the primary obstacle

6



Table II. 450X-R100 Technical Specifications (from 450X-R100 manual).
Sonar Characteristics

Max Range 137m (450ft)

Update Rate Up to 10Hz

Swath Width 95°Horizontal 46°Vertical

Beam Width 1°x 15°

Electrical

Power 12-48 volts DC @ 20 watts

Communications Ethernet

Mechanical

Depth Rating 100m

Weight in Air 9.57kg

Weight in Water .95kg (positive)

Length w/ Nose Cone 53.97cm

Width 19.05cm

Acoustic

Operating Frequency 300 to 600kHz

detection plane.

The sonar return can be visualized in Cartesian space or in polar space, see

Fig. 5. The size of the polar space image from the sonar is 461x1024 pixels high. The

sonar also returns a 462x333 Cartesian space image.

4. Secondary Controller

The REMUS has an on-board proprietary autopilot that controls the vehicle to

accomplish a predetermined mission. The autopilot contains an interface that allows

a second on-board user computer to receive vehicle state and status information and

to take control of the vehicle in a limited fashion. The second computer in the Naval

Postgraduate School’s REMUS 100 is referred to as the secondary controller and is

located just behind the BluewView FLS.

The secondary controller is an Intel 1.9GHz PC-104 with 1GB of RAM running

GNU\Linux with a 2.6.24 soft real time kernel. The secondary controller on the

REMUS vehicle has three primary functions: operating and storing images from

7



Figure 4. BlueView 450X with nose cone removed to show the six transducer config-
uration.

the FLS, monitoring and logging REMUS state information, and sending commands

to the REMUS autopilot. Control of the sonar and REMUS along path planning

and other tasks are comprised of smaller programs that are linked through Mission

Oriented Operating Suite (MOOS) publish and subscribe architecture [Ref. 2].

B. SOFTWARE DEVELOPMENT PROCESS

Because of the short development time frame a two-step approach was taken

to develop the software. First, the MATLAB scripting language was used for rapid

8



Figure 5. Left: Sonar image of the ground and approaching rock wall in Cartesian
space (462x333). Right: image is the same image in polar space (461x1024).

prototyping of different models and techniques. Since MATLAB is a higher level

scripting language, issues with memory management were alleviated. MATLAB also

contains common linear algebra and image processing functions so different techniques

were evaluated with much less effort. MATLAB allowed for quick generation of

plots so results could be quickly evaluated in multiple ways. However, the ease of

programming came at the cost of slow runtime speeds. Testing all four models could

take up to a minute per image which is much longer than the 1.25 second refresh rate

of the sonar.

The second step involved the porting of techniques developed in MATLAB into

C++. This was accomplished by first creating a UML class diagram of the C++ class

structure Fig. 6. The classification algorithms identified in Stage 1 were encapsulated

as C++ classes in order for the target code to meet the timing constraints of the

embedded system.

9



Figure 6. MOOS Module Class Diagram. This UML diagram was created after
techniques were finalized in MATLAB. It served as a plan when developing C++
code.

C. SOFTWARE DESIGN

The MOOSSonar class is a subclass of the CMOOSApp class, refer to Fig. 6.

The CMOOSApp class is an abstract class that describes the interface with the

MOOS architecture. The MOOSSonar object instantiates bvtsonar to interface with

the BlueView sonar, ObstacleDetectVert to extract objects from the vertical sonar

images, and ObstacleDetectHoriz to extract objects from the horizontal image. Ob-

stacleDetectVert and ObstacleDetectHoriz inherit common acoustic image processing

methods from the ObjectDetect super class. The ObjectDetect class contains the

functions to describe the background, detect and describe pulse noise and detect and

describe modem noise. The models can be easily changed through a configuration

file.

10



D. SONAR FEATURE EXTRACTION

Extracting features from side scan sonar images is a problematic process. A

common approach to feature extraction is to locate and classify an object by locating

its shadow [Ref. 16] [Ref. 17] [Ref. 13]. Using shadows from side scan images has

two distinct advantages. First, the shadow regions are more invariant to changes

in sonar conditions than the highlighted region [Ref. 18]. Second, shadows cast

by man-made objects have a more regular geometric shape than shadows cast from

natural objects [Ref. 13] [Ref. 19]. Some techniques used to extract shadows are snake

models [Ref. 18] and template matching [Ref. 5]. Using shadows to extract features in

side scan sonars has been applied to forward looking sonars as well [Ref. 7] [Ref. 22].

However, in our application, the use of shadows to detect possible obstacles has some

limitations. The primary limitation is due to the mounting of our sonar (5 down

tilt) and the low altitude the REMUS flies at, since the ground is only ensonified 30

meters ahead of the vehicle. When the ground beyond the object is not ensonified

there is no shadow. Therefore only objects within a relatively short distance to the

vehicle will create a shadow. Another limitation is that the object must be shorter

than the vehicle’s current altitude to create a shadow in order to calculate height.

With objects taller than the vehicle’s altitude the ground behind the object will never

be ensonified, so there will never be a top to the shadow. Knowing the altitude of an

object helps in determining the best way to avoid it.

Forward looking sonars can return multiple overlapping frames. Another

common technique for feature extraction is to compare the movement of possible

objects between the frames and filter them based on some predetermined parame-

ters [Ref. 15] [Ref. 8] [Ref. 6] [Ref. 10]. While using multiple frames to filter obstacles

has been successfully applied there are the following limitations. First, the technique

requires the object to be imaged in multiple frames. The vehicle travels at 2.5 me-

ters/second and the refresh rate for the 450X-R100 at a range of 90 meters is 1.25

seconds. If three frames are needed to classify an object the vehicle will travel roughly

11



6 meters before detecting it. This is a reasonable amount of time if the object is first

seen 30-50 meters out, but this might be an issue when the vehicle is turning or pitch-

ing where new objects will be seen with much less distance to react. This assumption

is valid in most cases, but violated in a shallow, high-traffic area such as a harbor

where quick, reactive obstacle avoidance is needed.

Not only can FLS be used for obstacle detection and avoidance but vehicle

state information and localization can be determined [Ref. 12] [Ref. 21] [Ref. 3].

In [Ref. 21]two-view homography was used with FLS images in the horizontal plane

to estimate 3-D motion parameters. In [Ref. 21] EKF filters were used to extract

useful features from the BlueView FLS to simultaneously localize the vehicle and

create a map (SLAM).
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II. ACOUSTIC IMAGE MODELS

The intensity of the echo that generates the acoustic image depends on many

factors, including tiny particles in the ocean (“backscatter”), cross-talk between the

transducers, other acoustic sources, the density of the object, and its size and distance.

Our approach to detecting various objects FLS images was to develop models

of four of the common artifacts off-line, then apply these models to images in real-

time when the vehicle is operating in the water. A blend of pixel-based and spatial

(neighborhood, template-based) models were utilized depending on the object or ef-

fect. The four features commonly found in our data sets are background noise, noise

caused by the micro-modem, a digital pulse caused by an unknown source, and the

ground.

The four models were then applied to the original sonar image after smoothing

with a 5x5 Gaussian filter. In order to extract features the image, noise and backscat-

ter background was estimated, followed by a search for the presence of artifacts from

other acoustic sources. Areas not well described by the first three techniques were fit

with a ground model. Remaining pixels that were not well described were grouped

by proximity to see if they were large enough to be pose a collision hazard. The

complete model for the entire image is a mixture of source models Pi:

I(x, y) = max(Pi(x, y))

A. ACOUSTIC NOISE BACKGROUND MODEL

The background is characterized by low intensity random signals. A uniform

image-wide threshold is insufficient for describing the background because the average

intensity of the background noise varies by angle across the field of view, a typical

characteristic of this technology.
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Using the polar plot and a set of images containing only the background,

an intensity histogram was created for each angle. Visual observation suggested a

Gaussian noise intensity model. Hence, a Gaussian was fit to the histogram, one per

angle. The Gaussian would model the background intensity distribution for angle α,

parameterized by its mean µα and variance σ2

α. The score that a pixel was background

was set to true (.98) if the intensity of the pixel fit within 3 standard deviations

of the Gaussian models mean for that angle. The .98 score was determined from

experimental results.

Pbg(α, r) =











.98 if |Iα,r − µα| < 3σα

0 if |Iα,r − µα| > 3σα

B. ACOUSTIC INTERFERENCE NOISE MODELS

There are two types of acoustic noise in the FLS images that are caused by a

second acoustic source. The more common one is generated from the acoustic modem

which occurs in about 7% of the frames. The acoustic modem fills about 80% of the

image with small rectangles of varying intensities, see bottom of Fig. 7.

The other type of acoustic noise is a digital pulse that is caused by an unknown

source. This artifact is less common, occurring in about 1% of the frames. The noise

is less invasive, only affecting a small area of the image. See top of Fig. 7 for examples

of the pulse artifact. Just as the background noise, both of these artifacts are easier

to analyze in the polar space as they are found at specific angles and within a distance

range.

A two-stage approach was used to detect and describe the acoustic noise.

First, the image was quickly analyzed for noise presence. If detected, the appropriate

model would “identify” pixels within an intensity range and location as the respective

acoustic noise.
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Figure 7. Top Left: Pulse artifact from unknown source and ground in Cartesian
space. Top Right: Same image in Polar Space. Bottom Left: Modem noise and
ground in Cartesian space. Bottom Right: Same image in Polar Space.
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1. Acoustic Pulse Noise

The pulse noise has a digital pattern confined to a small band of approximately

75 pixels in width at a certain distance in the polar space. Under normal operations,

the noise is slightly attenuated and is seen on the top (“top-pulse”) and bottom

(“bottom-pulse”) third of the image. Since the full band is rarely seen, the search

was limited to the top and bottom of the image. Because of the predictable size

and shape of the search area, correlated template matching was used to detect the

presence of pulse noise in the image. The template sizes for the top-pulse noise

and bottom-pulse noise templates were determined separately as the average of all

annotated pulse sub-images.

Four approaches were tested to detect images with pulse noise. The first two

techniques applied templates of the noise to the image and scored the correlation using

a sum of absolutes difference (SAD) and normalized cross-correlation (NCC) [Ref. 9].

SAD(x, y) =
rows
∑

i=0

cols
∑

j=0

|(x + i, y + j) − (i, j)|

NCC(x, y) =

∑

x,y

[

f(x, y) − f̄u,p

]

[t(x − u, y − v) − t̄]
{

∑

{x,y}

[

f(x, y) − ¯fu,v

]2 ∑

x,y [t(x − u, y − v − t̄]2
}0.5

The lowest score from the SAD test and the highest score from the NCC test were

used to detect the presence of pulse noise. The other two techniques calculate the

mean and median of an area the size of the template on the top and bottom of the

image. The 75x400 pixel area was shifted horizontally a row at a time until the

mean and median were calculated for all the pixels across the top and bottom of the

image. The highest score from each of the four sections ( top mean, bottom mean,

top median, bottom median) was used to detect the presence of pulse noise.

For the correlation test to detect top-pulse noise, five templates were tested.

Four of the templates (Ptff , Ptlc, Ptsd, Ptpc) were site-specific and created by aver-

aging five sub-images containing only top-pulse noise from an individual site (Ptav).

The fifth template was created by averaging the four templates together, see Fig. 8
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The above steps were repeated for creating five bottom-pulse templates (Pbff , P blc,

Pbsd, Pbpc, Pbav).

The score from the detection test was used to classify images as containing

pulse noise. Once an image was classified as having pulse noise the pixels within the

area of the up-pulse and bottom-pulse template at the detected distance were set as

being caused by pulse noise.

2. Modem

Four approaches were tested to detect images that contain modem noise. The

first two techniques matched a template of an approximately 60 degree downward

sloping “digital” pattern against parts of the image, about 3/4 down (see Fig. 9).

The correlation was scored with SAD or with NCC. The second two techniques were

the calculating of the mean and median intensities of the top 20% and bottom 20%

of the image.

Five different templates were tested (Mff , Mlc, Msd, Mpc, Mav). The fist four

were cropped directly from randomly sampled images from each site. The fifth was

the average of the four templates together, see Fig. 10.

If modem noise was detected, pixels within an angle specific intensity range

were marked as modem noise. This range was determined by finding the mean of

the brightest pixels for each angle of a set of 20 annotated images only containing

modem noise. The lower limit was three standard deviations above the mean of the

background model for that angle.

For each angle the probability is set to 1 if intensity for the pixel (angle dist)

is less than intensity threshold value, as in

Pmn(α, r) =











1 if I(α, r) > tbg and I(α, r) < tmn

0 otherwise

.
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Figure 8. Ten pulse templates tested. A)Ptsd B)Ptpc C)Ptlc D)Ptff E)Ptav F)Pbsd

G)Pbpc H)Pblc I)Pbff J)Pbav
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Figure 9. Common pattern found in all images with modem noise

Figure 10. Five modem templates tested. A)Mpc B)Mff C)Msd D)Mlc E)Mav
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C. GROUND MODEL

Unlike acoustic artifacts and the backscatter noise, the image of the ground

changes position and rotation relative to the vehicle. The ground is also better repre-

sented in a Cartesian space image. The shape and intensity of the ground varies from

different bottom types but is similar enough to describe with a common template.

To fit the ground template over multiple environments, the template has five design

parameters. It can be translated in x and y, rotated, and scaled by width and height

independently. The template is scored on its fit using normalized cross-correlation.

The template is fitted to the image using Nelder-Mead [Ref. 14] non-linear optimiza-

tion method.

Five ground templates were created and tested (Gff , Glc, Gsd, Gpc, Gav). The

first four were cropped manually from an image from each of the four sites. The

image in each run was chosen to be a good representative to the given run. The fifth

template was created by averaging forty ground images together, ten images from

each site. Refer to Fig. 11 for the ground templates.

Before the ground model was fit to the image, initial points were needed.

These start conditions were needed for the ground template because this technique

is susceptible to issues with local minima. To locate initial conditions the previous

noise description techniques were applied to the corresponding polar image. The

polar image was then transformed to Cartesian space. Pixels not described with

noise models were clustered by proximity. The center points of clusters larger than

300 pixels were used as the starting location for the ground template. The default

template size was used for the initial scale. Six degrees was chosen as the initial

rotation because the sonar has a five degree tilt down and the vehicle tends to operate

with a one degree down tilt, making the ground appear at 6 degrees under the most

common conditions.

The Nelder-Mead non-linear optimization method and NCC were used to fit

the ground model to the original Cartesian image after it had been smoothed with a
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5x5 Gaussian. The final location of the center of the template, final rotation, width

scale, height scale and number of iterations were then recorded.

The important criteria to a good fit is that the top of the template ground and

the annotated ground align. If the template is above the annotated ground, obstacles

will appear lower and the vehicle might not classify it as a hazard. If the template

is below the ground, then the vehicle and obstacle altitude appear high. Alignment

of the top of the ground is also an important criteria because any information below

the top surface of the ground is caused by the acoustic ping penetrating the medium

and offers no information to vehicle or obstacle position. Therefore, as long as the

template describes the entire ground it can be oversized in the horizontal and vertical

scale.

To quantify the results a weighted score was used. To create the score a

binary image was created of the fitted template and annotated ground. An intensity

threshold of 59 was used because that was the average threshold for the background.

The number of ground template pixels above the annotated ground (Pixelst) and

the number of annotated ground pixels above the ground template (Pixelsa) were

summed together. These two criteria are only mutually exclusive when the template

ground angle and annotated ground angle are equal. That score was then multiplied

by the percent of annotated ground not covered by the ground template plus one

(Pg not).

egroundf it = (Pixelst + Pixelsa) ∗ (Pg not + 1)

This score measures how close the ground template and annotated ground are. If

the ground template described the entire annotated ground, then the first two scores

were multiplied by one. If the template and the annotated ground did not intersect

at all, then the first two scores were summed and multiplied by two.
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Figure 11. Five ground model templates tested. A)Gsd B)Gpc C)Glc D)Gff E)Gav
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III. EXPERIMENTS

Data for the experiments were captured over the last year from four sites (see

Table III), chosen due to varying factors such as bottom type and water temperature

Fig. 12. Different sites were chosen to compare how well the models behaved in

varying environments. The Fisherman Flats (FF) site in Moss Landing, CA was

chosen because it contains objects the vehicle almost collides with. Silver Strand in

San Diego, CA (SD) and Shell Island in Panama City, FL (PC) Florida have similar

bottom types but with different environmental characteristics. The Lovers Cove (LC)

site in Pacific grove, CA was used to test the models in very complex scenarios. Not

only is this is a rocky shallow sight with both the ground and water surface in the

frame but there is also a thick kelp forest present.

The data was logged to a file and later extracted on a PC without loss of

quality compared to data obtained directly from the sonar head. The BlueView

sonar returned a 16bit single channel image in a 463x333 pixel Cartesian space and a

16-bit image in polar space of 461x1024 pixels including the borders. The images were

retrieved from the binary file using BlueView’s API and OpenCV, then converted to

8-bit depth and saved as JPEGs. All the runs had the maximum sonar (ping) range

set to 90 meters.

Table III. Characteristics of the four sampling sites, numbers are frame counts.

Site Depth Bottom Type pings modem pulse

Fisherman Flats (FF) 15m Sandy with 3m tall rock outcrop 1860 146 62

Lovers Cove (LC) 5m Rocky with dense kelp forest 673 38 14

Shell Island (PC) 20m Flat small grain sand 4384 332 142

Silver Strand (SD) 20m Flat sand 5376 362 187

From these four sites roughly 300 images were annotated using the LabeMe

tool [Ref. 20] by marking the silhouette of all objects that an experienced sonar image
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Figure 12. Sample Images from the four sites. Top Left: Fisherman Flats (FF) Top
Right: Panama City (PC) Bottom Left: San Diego (SD) Bottom Right: Lovers Cover
(LC).

analyst could find. Refer to Fig. 13 for a sample of an annotated image. Experiments

were implemented in Matlab and run off-line.

A. ACOUSTIC IMAGE BACKGROUND MODELS

Five different background models were created and tested (Bg1, Bg10, Bg25,

Bg50, Bg50a). The first four models were created from randomly sampling 1, 10,

25 and 50 images from a set of 80 images (20 from each site) smoothed with a 5x5

Gaussian filter with all annotated areas set to 0. The fifth model was created from a

dataset of 50 images that were taken from the sonar in the air (out of the water), which

is thought to be a good measure for device-internal noise sources. A histogram was

created for every angle in the polar images, resulting in 1024 histograms per model.

Then a Gaussian curve was fit to each histogram g(x) = a1 ∗ exp(−((x − b1)/c1)2).

Refer to Fig. 14 for the set of histograms and Gaussian fit. Two other line-fitting

functions were tested. An 8th degree polynomial p(x) =
∑

8

i=0
ai ∗ x8−i and an 8th
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object
modem

Figure 13. Sample Cartesian image annotated with LabelMe.

degree sum of sines w(x) =
∑

8

i=0
ai ∗ sin(bi ∗ x + ci) were also fit to the histogram.

The Root Mean Square (RMS) error was calculated for each fit and averaged over all

the histograms

The Gaussian background models were then tested against the 37 annotated

images that had not been used to create the models. Again, to remove all artifacts

that were not background noise, the images had the area of all tagged objects set

to 0. An intensity of 0 only occurred in the border of the image. The quality of

the model fit was determined by calculating the number of pixels with an intensity

within three standard deviations of the model’s mean and dividing the total number

of pixels greater than zero for that row.

BgFit(α) =

∑

|Iα,r − µα| < 3σα
∑

Iα,r > 0

The final background experiment was to test the model’s ability to seperate

background noise from other artifacts. The complete set of 87 images was used.

First, a binary mask was created for each image. The binary mask set all pixels
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Figure 14. Intensity histogram from background training set of 50 images. Extracted
is the histogram from the 300th row with the corresponding Gaussian model fitted.

within annotated areas to 1 and all other pixels (background) to 0. Next, a second

mask was created by setting each pixel with an intensity within .01 deviations of the

model’s mean to 1. The dot product of the two masks resulted in a matrix where

1 represents a false positive. The not-background mask was subtracted from the

background model mask to get the true positives.

1. Acoustic Pulse Noise

To detect pulse noise in an image 24 experiments were conducted on a 552

image test set. Refer to Table IV for what images comprised the test set. Twenty

of the experiments were template matching. Ten of the experiments applied the five
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top-pulse templates (Ptff , Ptlc, Ptsd, Ptpc, (Ptav) to the top of each of the 552

images, recording the highest NCC score and the lowest SAD score. The other ten

experiments applied the five bottom-pulse templates (Pbff , Pblc, Pbsd, Pbpc, Pbav) to

the bottom of each image and the highest NCC score and the lowest SAD score were

recorded. Before each experiment every image was smoothed with a 5x5 Gaussian

filter.

Table IV. Images used in the pulse test set.
Site pulse noise no pulse noise

Fisherman Flats (FF) 62 62

Lovers Cove (LC) 14 14

Shell Island (PC) 100 100

Silver Strand (SD) 100 100

total: 276 276

The other technique consisted of four experiments calculating the mean and

median of sections of the image. This technique was similar to the template matching.

An area the size of the template was moved across the top and bottom of the image

and the mean and median within the area were calculated. The highest score from

each test was recorded.

2. Modem Noise

There were 12 experiments testing different ways to detect modem noise in a

676 image test set, refer to Table V for what images comprised the test set. Before

each experiment every image was smoothed with a 5x5 Gaussian filter.

Two different techniques were tested to detect modem noise. The first tech-

nique was template matching and consisted of ten experiments. Five templates (Mff ,

Mlc, Msd, Mpc, Mav) were applied to the bottom 20% of each image and scored using

NCC and SAD. The highest score from NCC and the lowest from SAD were recorded.

The other two experiments calculated the mean and median of the top and bottom

third of the image.
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Table V. Images used in the modem test set.
Site modem noise no modem noise

Fisherman Flats (FF) 100 100

Lovers Cove (LC) 38 38

Shell Island (PC) 100 100

Silver Strand (SD) 100 100

total: 338 338

B. GROUND

The ground model dataset was comprised of 40 annotated Cartesian-space

images, ten from each of the four sites. Each set from the different sites contained

two images with modem noise and one image with pulse noise. Some of the images

contained unclassified objects.

The five ground templates (Gff , Glc, Gsd, Gpc, Gav) were fit to the 40 test

images. The weighted score was calculated for each of the 200 experiments.

egroundf it = (Pixelst + Pixelsa) ∗ (Pg not + 1)
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IV. RESULTS

A. ACOUSTIC IMAGE BACKGROUND MODEL

Three functions were tested to see which best described the background inten-

sity histogram. Each curve was fit to each of the 1024 histograms by minimizing the

Root Mean Square (RMS) error. Refer to Fig. 16 for a sample of the curve fitting to

one of the histograms. Refer to Fig. 15 of the average RMS error for each function

over the 1024 histograms. The plot clearly shows that the Gaussian model has a

much smaller RMS error then the other two models. The average RMS value was

0.000167 which is 0.42% of the max histogram count.

For each of the five histograms, models were applied to 30 test polar space

images containing only background noise. The ratio of pixels that fit within the model

was averaged for each angle over the 30 images. Refer to Fig. 17 for the mean and

standard deviation of pixels described by the background model. All the Gaussian
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Figure 15. Graph of average RMS error of 1024 histograms for each of the three
functions.
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Figure 16. Left: Each of the 3 functions fit to the histogram. Right: Graph of the
RMS error of each of the fittings.

model tests described more than 96.5% of the background pixels. While models

created with 50 images performed better ,the average number of pixels correctly

described was within half a percent. This means that training sets larger than ten

images offer little benefit for creating background models. The models created from

background noise in 50 images taken in the air performed the worst. This is possibly

due to the models describing the background noise from the gain but not backscatter

from particles in the water.

Fig. 18 show a ROC curve of the background classification. The ROC curve

shows the percent of background classified to the percent of pixels that are not back-

ground misclassified, by changing the standard deviation of the model from .01 to

17. The curve shows that there is roughly 40% false positives to reach the 95% true

positives. After analyzing the results the number of false positives appears to be high.

1. Acoustic Pulse Noise

Twenty-four experiments were conducted comparing two different techniques

and two search areas to detect images with pulse noise. Figures 19,20,21,22,23 are

the ROC curves that were created from each of the experiments. The ROC curves
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models.
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31



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Top Pulse with NCC score

False Positive

T
ru

e 
P

os
iti

ve

 

 

Pt
lc

  Template

Pt
sd

  Template

Pt
ff
  Template

Pt
pc

  Template

Pt
av

  Template

Figure 19. ROC graph of top-pulse templates with NCC

19,20,21,22 of template matching experiments show how many images were correctly

described as having pulse noise to those that were incorrectly described as having

pulse using the correlation score as the threshold. The other ROC curves in Fig. 23

show how many true positives to false positives were found at different intensity values

from the mean and median experiments.

Three of the five templates detected pulse noise at the top of the image 90%

of the time,(see Fig. 19). One surprising result was how poorly the Ptff template

performed. This is probably due to the template being very bright at the top with

relatively little data in the rest of the template.

When the template difference was calculated with SAD, the Ptsd template

performed very well Fig. 20. It detected images with top-pulse noise 92% of the
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Figure 20. ROC graph of top-pulse templates with SAD

time. The Ptav and Ptpc templates were strong with both being able to detect noise

greater than 83% with less than 3% false positives. Both thePtff and Ptlc templates

performed poorly, with Ptff showing less than 40% detection andPtlc less than 15%

detection before starting to get false positives.

None of the templates performed well with detecting bottom-pulse noise with

NCC Fig. 21. The Ptlc template was the best but it was only able to detect 15% of

images with modem noise before it started detecting false positives.

Detection of bottom-pulse noise with SAD template matching is not a very

robust way to detect pulse noise Fig. 22. While two templates (Pbpc and Pbsd) scored

better than the others, they were still only able to detect 70% of the images with noise

before detecting false positives. The other templates Pbff , Pblc, and Pbav would only
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Figure 21. ROC graph of bottom-pulse templates with NCC

detect 11%, 28% and 40% respectively.

Using statistical tests is not a good way to detect images with pulse noise.

Only after 5% false positives would the true positive detection rise.

2. Modem Noise

Twelve experiments were conducted comparing two different techniques to de-

tect images with modem noise. Figures 24,25,26 are the ROC curves that were created

from each of the experiments. Similar to the pulse detection test, the ROC curves

of template-matching experiments show how many images were correctly described

as having modem noise to those that were described as having modem noise and did

not use the correlation score as the threshold. The statistical experiment ROC curves

show how many true positives there are to false positives at different intensity values
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Figure 22. ROC graph of bottom-pulse templates with SAD

from the mean and median experiments.

All the modem templates scored with NCC performed well in detecting modem

noise Fig. 24. The lowest-performing templates still detected 80% of the images with

less than 3% false positives. The best-performing templates (Mlc and Mav) both

detected 96% true positives before detecting false positives.

An interesting result was the ROC curve for modem templates scored with

SAD Fig. 25. The Mpc template scored the best out of all the experiments with 100%

detection and less than 3% false positives. The rest of the templates performed very

poorly with very interesting curves. The unique flat curve is because of the templates

brightness. The Mlc template was quite dim compared to theMpcC template. When

the scored with SAD the template was closer to background than the site with bright
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Figure 23. ROC graph of pulse templates with statistic test

modem noise. Therefore, the template worked well on one site, then the difference

between the brightness of the background noise and the template was closer than the

brightness of the template to the sites with bright modem noise.

The statistics test to detect modem noise performed much better than antic-

ipated Fig. 26. The mean and the median detected 97% of images before detecting

any false positives.

B. GROUND

The five ground templates (Gff , Glc, Gsd, Gpc, Gav) were fit to 40 test images

representative of the different sites’ characteristics. To quantify how well the ground

36



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Modem Detect with NCC score

False Positive

T
ru

e 
P

os
iti

ve

 

 

M
lc

 Template

M
sd

 Template

M
ff
 Template

M
pc

 Template

M
av

 Template

Figure 24. ROC graph of modem templates with NCC

template fit the annotated data the following weighted score was used egroundf it =

(Pixelst + Pixelsa) ∗ (Pg not + 1). After analyzing the results the following threshold

values were used to classify how well the template fit. A score less than 200 was

considered an excellent fit. To get a score of 200 the annotated ground must be

completely described by the ground template and the tops of the ground can be shifted

one row of pixels in the vertical direction. Scores less than 500 were considered a good

fit, scores between 500 and 1000 were poor and any score greater than 1000 was an

unacceptable fit. Four plots were created of the scores from each site, Fig. 27,28,29,30.

Refer to Tables VI,VII,VIII,IX for a summary of how each template performed at the

different sites. Fig. 31 and Fig. 32 are two sample plots of the completed mixture

model.
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Figure 25. ROC graph of modem templates with SAD

Table VI. Ground template fit weighted score summary for Fisherman Flats.
Template excellent good poor unacceptable

Gff 6 2 2 0

Glc 0 2 4 4

Gsd 4 5 1 0

Gpc 0 9 1 0

Gav 0 4 4 2
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Figure 26. ROC graph of modem detection with statistic scores

Table VII. Ground template fit weighted score summary for Lovers Cove.
Template excellent good poor unacceptable

Gff 0 1 2 7

Glc 0 0 2 8

Gsd 0 0 2 8

Gpc 0 0 1 9

Gav 0 1 2 7
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Table VIII. Ground template fit weighted score summary for San Diego.
Template excellent good poor unacceptable

Gff 3 7 0 0

Glc 0 4 3 3

Gsd 5 5 0 0

Gpc 1 9 0 0

Gav 0 0 10 0

Table IX. Ground template fit weighted score summary for Panama City.
Template excellent good poor unacceptable

Gff 3 6 1 0

Glc 0 3 6 1

Gsd 2 7 1 0

Gpc 0 4 6 0

Gav 0 2 7 1
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Figure 27. Plot of weighted score of five template fit to Fisherman Flats dataset
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Figure 28. Plot of weighted score of five template fit to Lovers Cove dataset
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Figure 29. Plot of weighted score of five template fit to San Diego dataset
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Figure 30. Plot of weighted score of five template fit to Panama City dataset

Figure 31. Left: Sonar Image with obstacle protruding from ground. Right: Processed
Sonar Image.
Green=background, Red=ground, Blue=pulse noise, Black=unknown
object(approaching rock wall)
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Figure 32. Left: Sonar Imagewith faint obstacle approaching. Right: Processed
Sonar.
Green=background, Red=ground, Black=unknown object
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V. DISCUSSION

A. ACOUSTIC IMAGE MODEL

The results show that the models explain the observed patterns fairly well.

The background models fit to over 96% of the pixels within 3σ, which were exploited

to define a good probability function for segmentation into background and other

artifacts. There were some issues with the background classification experiments.

The results of the background ROC curves inaccurately portrayed the performance

of the background segmentation, caused by errors in annotation. This was a result of

techniques used to quickly create annotations. This issue only affected the background

ROC test because annotated features contained a noticeable amount of background

noise.

The template-based pulse noise detection performs well in the top portion of

the image using the PtSD template matched with SAD. This was able to classify

images containing pulse noise correctly 92% of the time with less than a 3% false

positive rate. The same template scored with NCC performed substantially worse

with a detection rate of 60% with 50% false positives. Overall for detection of top-

pulse noise the templates scored with SAD performed much better than those scored

with NCC and the three templates PtSD, P tav and Ptpc that performed well scored

with SAD performed the worst when scored with NCC. None of the bottom-pulse

template-based detections performed better than the top-pulse. We suspect this was

because the ground was interfering with the template matching, increasing the false

positives. The Pbpc template scored with SAD performed the best out of all the

bottom-pulse template experiments. This template had an 80% detection rate with

less than 7% false positives. While most of the templates did not perform well, a few

were able to detect images with pulse noise. Template matching is a reliable way to

detect pulse noise, but the right template is important. Using the mean and median

of small areas was not reliable in detecting any of the pulse noise. For bottom-pulse
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noise both median and mean were 50% detection to 50% false positives. Up-pulse

noise was slightly better. Future work should investigate using a Bayesian classifier

to get a single score from the up-pulse and bottom-pulse test.

It should be noted that the site-invariant template (Ptav) did not perform

better than third in any of the pulse noise detection experiments. We suspect when

the Ptav template was created by averaging the templates together, the features that

make a good template were muted.

A 92% detection rate for pulse noise is acceptable. Pulse noise is not as

common as other noise and it effects a relatively small area. A image misclassified

as not having pulse noise will not have a substantial effect on latter processes. The

pulse area will appear as three to five extra objects in an image.

Modem noise detection proved robust with any of the three techniques. With

Template-based modem noise detection with NCC, all five of the modem templates

(Mff , Mlc, Msd, Mpc, Mav) accurately detected images with modem noise more than

80% of the time with less than 5% false positives. The Mpc template with the SAD

scoring performed the best with 100% detection and 1% false positives. Calculating

the mean and the median were both very reliable at detecting images with modem

noise 98% of the time with less than 2% false positive.

Being able to accurately identify images with modem noise is important be-

cause the noise effects such a large area of the image. If an image is misclassified

as not having modem noise then the large unknown area will be classified as objects

and possible collisions. During the ground-template-fitting stage a ground model will

be fit to each one of these objects. This will increase the run time of the ground-

template-fitting stage exponentially.

The method for ground position and orientation estimation with a generic tem-

plate succeeded in the majority of the cases. The Gff and Gsd templates performed

the best at multiple sites. One interesting result was that the Gff , Gsd performed the

best at their corresponding site, but Gpc, Glc did not. Also, the Gav was one of the
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poorest performing templates over all the sites. Using template matching to find the

ground worked well at specific sites but did not do well at describing the ground at

the Lovers Cove site. The ground at this site is very rocky and dynamic and difficult

to describe with a template.

B. SOFTWARE DEVELOPMENT

Developing the software architecture in two stages was very successful. Most

development time was spent testing different classification techniques. Once these

were complete the UML digram was created in an afternoon. In just over a week

80% of the C++ code was written and debugged. Currently implemented is the

background classification, pulse noise detection/classification and modem noise de-

tection/classification. These sections have been debugged and tested and the results

match those of MATLAB. Other functions needed such as polar to Cartesin are also

implemented. Taking advantage of object-orientated concepts such as inheritance

testing in the horizontal plane using these techniques has already begun. Tasks

that are still remaining are implementing the ground template matching which is

50% complete and creating benchmark functions that use real-time clock to get sub-

millisecond timing. The development schedule would not have been possible using a

single programming language.
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VI. CONCLUSIONS

This thesis tested the quality of models for detecting and locating acoustic

image artifacts across a range of ocean environments. The four artifacts modeled were

all well detected and described. Experiments demonstrated that images containing

pulse noise and modem noise can be reliably classified. This is critical because in some

situations devices like acoustic modems are required. For example, in multi-vehicle

operations acoustic modems are a common way for vehicles to communicate over

ranges greater than a few meters. In scenarios with a constant bottom type, using

template matching was a succesful way to describe the ground. With the ground

described vehicle state information can now be estimated.

Reliable, robust detection is critical for navigation and obstacle avoidance

based on FLS data analysis. In comparison to prior methods, this can be performed

in still images and entirely without knowledge of metadata, as opposed to relying on

temporal information, smoothing and consistency.

There was one experiment that was inconclusive. The test data set to quantify

the background classification were annotated incorrectly. A new set of images need to

be annotated and this test rerun. The methods described in this thesis are scheduled

to be tested live on-board a vehicle early January 2009. To meet the testing deadline

the conversion to C++ needs to be finished and these methods applied to the hor-

izontal plane. Once testing is complete future work will include decreasing process

time and refining the current models. For example some of the templates performed

much better than others, but it is not known why. It is unclear what makes a good

template for the different artifacts. Future work will also include creating models for

artifacts that are not currently described. In conclusion this thesis describes robust

methods to detect and classify common artifacts in FLS images.
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